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Summary

The research described below was carried out during the period 1
February 1998 to 30 September 2001. We have made significant progress
on several fronts. We have obtained positive-weight quadrature rules that
are exact for spherical harmonics of prescrided order and that allow func-
tion evaluations at scattered points, and we have given algorithms for
obtaining these weights. Based on these rules, we were able to construct
neural networks for spheres using zonal activation functions. We also
made progress on the difficult problem of locating multiple sources with
neural networks. On another front, we provided error estimates for in-
terpolating less smooth functions via networks with smooth activation
functions; this is the first result of its kind. In addition, we provided a
class of functions to which our error estimates aplly; these functions are
both easy to use and locally supported, so that interpolation matrices
arising from them will be banded.

Review of Research

The research described below was carried out during the period 1 February
1998 to 30 September 2001, the final year being a no-cost extension. The work
itself is communicated in the papers and informal technical reports listed in §2.




Publications are denoted by ‘P’, technical reports by “T’. The numbering is from
the lists in §2.1 and §2.2. Our research fits into the broad categories described
below.

1.1 Error estimates and positive-weight quadrature

Our research on error estimates for generalized Hermite interpolation using
radial-like basis functions on non-traditional spaces — the n-sphere, n-torus,
and Riemannian manifolds — began with work done jointly with N. Dyn that is
described in [P2]. These rates were the first for such manifolds, and made use
of variational techniques in a reproducing kernel Hilbert space setting. For the
sphere, these results depended on a sampling theorem for the sphere introduced
by Driscoll and Healy [2]. The use of this sampling theorem limited the applica-
bility of these results to the latitude-longitude grid on the sphere. At the time,
one of our goals was to expand the range of applicability of this method. How
we did this is described below.

We also completed joint work with R. Schaback [P12] investigating a version
of a multilevel method introduced by Floater and Iske [1] that interpolates
residuals, but uses convolutions of RBFs rather than the scaled RBFs employed
in [1]. The methods employed were based on ones used in [P2]. We obtained
rates of approximation for this interpolation process. These estimates were
the first ever for cases in which parameters, such as spreads and actual basis
functions, were allowed to change.

Building on the framework established by Dyn, Narcowich, and Ward in [P2],
and joint with Professors Jetter and Stoeckler, we obtained rates of approxima-
tion by spherical-basis-function (SBF) interpolants for the case of scattered-data
on the d-sphere [P3]. The work introduced the Banach-space idea of norming
sets to surface fitting problems. The bounds obtained were explicit, in terms
of the mesh norm of the data. In addition, new quadrature formulas, based on
scattered-data, were provided for the sphere in [P4], but, unfortunately, these
gave no control on the weights in the quadrature formulas.

This lead to a deeper investigation of the possibility of obtaining positive
weight, scattered-data quadrature formulas for the d-sphere. These formulas
would reproduce spherical harmonics of a given order, but at the same time
use a number of points from the scatted data comparable to the dimensions of
the spaces of spherical harmonics involved. Such results, which are well known
and have long been utilized for special point sets in intervals on the line and
in rectangular boxes in higher dimensions, were not known for the sphere. In
[P6), which was joint with H. Mhaskar, we not only obtained such formulas, but
we arrived at them by establishing an important norm equivalence. We showed
that, for the space of spherical harmonics on 5S4 having order n or less, the
LP(S%) norm is equivalent to the discrete £7 norm of the spherical harmonics
restricted to a point set X € S¢, where the number of points in X is compa-
rable to the dimension of the space of spherical harmonics. This generalizes to
the sphere an old result of Marcinkiewicz and Zygmund for trigonometric poly-
nomials. One spinoff of the norming-set technique is a scattered-data positive




weight quadrature formula on a cube in R? and related approximation results;
these were reported in [P8]. Another concerns neural networks, which we will
describe in §1.2 below,

Others applications of norming sets again deal with error estimates. RBF
error estimates on compact domains in R? were first obtained for thin-plate
splines by Duchon [3, 4] and for RBFs in general by Madych and Nelson [5, 6].
Recently, Wendland [14] pointed out that the unevaluated constants in these
papers can be estimated using norming sets, and did so for the Gaussian RBF.
In joint work with Wendand [T2] we employed the norming set technique to
provide new and refined error estimates that apply to scattered-data interpolants
and their derivatives, not only in R%u t on the d-torus and 2-sphere as well.
In many cases our estimates provide bounds orders of magnitude smaller than
those previously known.

Many of the results mentioned above dealt with error estimates occurring
when the functions sampled belong to the reproducing kernel Hilbert space
induced by an RBF or similar kernel. These spaces are often called native
spaces. The overall effect is that these results are limited to having the functions
sampled be as a smooth as the RBF, itself. In many cases this is not a problem.
However, when the smoothness class of a target function is unknown, this does
become a problem.

In work done jointly with R. Schaback, we began addressing this problem.
We showed in [P13] that we could approzimate target functions outside of the
native space using linear combinations of RBFs. The linear process we provided
in that paper, while yielding good results, is difficult to implement. We felt we
could do better.

The key to doing better is a technique “dual” to the one employing norming
sets; it was presented in [P10]. This technique, which is functional analytic in
character, allows one to obtain simultaneous interpolation and a near-optimal
degree of approximation by radial and related basis functions, for a cube, torus
or 2-sphere. Related results are also found in [T3].

Our most recent work [T5] applies the “dual” norming set technique to ob-
tain Sobolev-type error estimates for interpolating functions f € C?(54) from
“shifts” of a smoother SBF defined on S¢. Moreover, these estimates are close
to the optimal approximation order, and obtaining them is computationally fea-
sible. Although RBF interpolation has been in in use for nearly a score of years,
no previous work has successfully shown that RBF-type interpolants converge
when the sampled function is not in the native space. This is the first paper to
do so.

1.2 Neural networks and PDEs

The field of neural networks encompasses a vast area, overlaps with many oth-
ers fields, and can be approached in a variety of ways. Our approach is that
of Poggio and Girosi [9], who view learning as a problem of hypersurface re-
construction. In a broad sense, all of the work we have done has been aimed
at this problem. Even so, we wish to discuss results that specifically apply to




neural networks, especially ones on non-traditional spaces — spheres and other
manifolds.

Neural networks on spheres come up in applications to geophysical prob-
lems. Networks on other spaces that we’ve studied arise in connection with
neural beamforming problems [8, 11]. Our paper [P15], joint with O’Donnell
and Southall, details our work in attacking the problem of direction finding in
the presence of multiple sources and sets out new avenues for future research.
Concerning the sphere, we have written several papers addressing questions con-
cerning stability, interpolation, and approximation with networks using zonal
functions as activation functions for the network. In [P14], we obtain stability
estimates—i.c., norms of inverses of interpolation matrices and condition numbers
for these matrices. More recently, we employed the quadrature formulas from
[P6] to study approximation power for zonal function networks; these results,
which are reported in [P5], showed that the networks themselves have nearly
optimal Sobolev-type approximation properties. In [P9] and [T4], we construct
a multiresolution analysis of the standard Hilbert space on a Euclidean sphere,
which can be implemented directly by neural networks. The neural networks
may utilize any sufficiently smooth function as an activation function, and their
size can be determined in advance. We introduce frame operators that can
analyze data selected at scattered sites. These frames can be used to detect
singularities, even in higher order derivatives.

Papers dealing with applications of RBFs to solving PDEs numerically have
for the most part been experimental. Definite theoretical results on error es-
timates and stability have been looked at in very few cases, and then only for
elliptic problems, which can be solved via finite element methods. In joint work
with R. Lorentz [T1], we present RBF/Hermite collocation methods that are
adaptive, highly flexible, multivariate, and can be employed in non-traditional
spaces, the sphere for example. We analyze in detail a simple transport problem
solved via such a method, and we found that it provides spectral convergence
orders that are competitive with previously known polynomial methods, which
have very limited scope and are not adaptive. This raises important questions
for future work.

1.3 Locally supported basis functions

To describe the results that we have gotten, we need to provide some background
material. A positive definite function on a sphere is a function ¢(cos#), where
6 is the geodesic (great circle) distance between two points on a sphere. The
idea is that the interpolation matrices with entries ¢(cos8; ) are positive semi-
definite for an arbitrary finite set of scattered points on the sphere. Long ago
Schoenberg [10] characterized such functions as being those having Legendre
expansions, '

@(cos ) = Z apPy(cos ),

£=0




in which a; > 0 and Py(cos 0) is the £* degree Legendre polynomial correspond-
ing to the n-sphere. When n = 2, these are the standard, familiar Legendre
polynomials. When n # 2, they are proportional to Gegenbauer polynomials
[7]. To guarantee that the interpolation matrices associated with ¢ are positive
definite and thus are invertible, we impose the condition that a; > 0 for all £.
A ¢ satisfying this is a spherical basis function (SBF).

There are three ways of obtaining SBFs: (1) directly from the series; (2) from
functions having known expansions, such as es? or a generating function; and,
finally, (3) from restricting RBFs on Euclidean spaces to a sphere. The difficulty
with (1) is that either one has to sum an infinite series or obtain good numerical
approximations to its sum. Most of the SBFs that we have came by way of (2).
Somewhere along the line a series expansion for a function was known, and the
coefficients were observed to be strictly positive.

Restricting RBFs to the sphere is simple enough. Suppose that z,y € S™
and that the angle between x and y is 6, so that the Euclidean dot product
z -y = cosf. If we let ® be an RBF in R™*!, then

¢z -y) = &(lz — yll2) |z pesn

is easily seen to be positive definite on S™. The hard problem was determin-
ing whether or not whether or not a ¢ gotten in this way was an SBF-that
is, whether or not all its Legendre coefficients were strictly positive. In [T5],
we showed that under very mild conditions, such ¢ were SBFs. This opened
the door to introducing a new class of SBFs; these are locally supported func-
tions arising via restrictions of Wendland’s compactly supported RBFs [12, 13].
These new functions are quite attractive; they can be both explicitly and easily
computed and are also have good convergence properties. Future work would
involve further exploration of their properties and fast evaluation methods.
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imation with Interpolatory Constraints, Proc. AMS, to appear.

F. J. Narcowich, “Recent Developments in Approximation via Positive
Definite Functions,” in Approximation Theory IX, Volume 2: Computa-
tional Aspects, C. K. Chui and L. Schumaker (eds.), Vanderbilt University
Press, Nashville, TN, 1998, pp. 221-242.

F. J. Narcowich, R. Schaback, and J. D. Ward, Multilevel Interpolation
and Approximation, Applied and Computational Harmonic Analysis, 7
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F. J. Narcowich, R. Schaback and J. D. Ward, Approximation in Sobolev
Spaces by Kernel Expansions, J. Approx. Theory, to appear.

F. J. Narcowich, N. Sivakumar, and J. D. Ward, Stability results for
scattered-data interpolation on Euclidean spheres, Advances in Computa-
tional Mathematics 8 (1998) 137-163.

T. H. O’Donnel}, F. J. Narcowich, H. L. Southall, and J. D. Ward, “Mul-
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alization,” in Proceedings of the Millennium Conference on Antennas &
Propagation, held from 9 - 14 April 2000, Davos, Switzerland, Publication
no. SP-444, ESA Publications Division, ESTEC, 2200 AG Noordwijk.
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Technical Reports

R. Lorentz, F. J. Narcowich, and J. D. Ward, Collocation Discretizations
of the Transport Equation with Radial Basis Functions, preprint.

. F. J. Narcowich, H. Wendland and J. D. Ward, Refined Error Estimates

for Radial Basis Function Interpolation, preprint.

. F. J. Narcowich, N. Sivakumar and J. D. Ward, On Convergent Interpd-

latory Processes Associated with Periodic Basis Functions, preprint.

. H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Neural Network Frames

on the sphere, preprint.

F. J. Narcowich and J. D. Ward, Scattered-Data Interpolation on Spheres:
Error Estimates and Locally Supported Basis Functions, preprint.

Research Conference Talks

J. Narcowich

Narcowich gave a plenary address at the 9TH INTERNATIONAL CON-
FERENCE ON APPROXIMATION THEORY, 3-6 January 1998, Van-
derbilt University, Nashville, TN (C. Chui and L. Schumaker, organizers)

Narcowich gave an invited half-hour talk, “Remarks on scattered-data sur-
face fitting via positive definite kernels,” EILAT98 International Confer-
ence on Multivariate Approximation and Interpolation with Applications
in CAGD, Signal, and Image Processing, held 7-11 September 1998 in
Eilat, Israel

Narcowich gave an invited half-hour talk, “Scattered data quadrature for
spheres,” Session on Mathematical Methods of Geodesy at the Mathe-
matiches Forschungsinstitut Oberwolfach, 29 March - 3 April 1999. The
session was organized by W. Freeden, E. Grafarend, and L. Svensson.

Narcowich gave an invited twenty-minute talk, “Multiple source direction
finding with reduced training and increased generalization,” at the Mil-
lennium Conference on Antennas & Propagation, held from 9 - 14 April
2000, Davos, Switzerland.

Narcowich gave an invited twenty-minute talk, “Scattered Data Interpo-
lation on Spheres: Locally Supported Basis Functions,”at the Special Ses-
sion on Sphere Related Approximation and Applications, AMS Regional
Meeting in Chattanooga, TN, October 5-6, 2001.




J. D. Ward

Ward gave an invited, one-hour address at the conference on CADG AND
WAVELETS held at Montecatini, Italy, 15-17 June 1998

Ward gave an invited half-hour talk, “Remarks on qudrature formulas
for the n-sphere,” EILAT98 International Conference on Multivariate Ap-
proximation and Interpolation with Applications in CAGD, Signal, and
Image Processing, held 7-11 September 1998 in Eilat, Israel

Ward gave an invited one-hour talk, “Approximation from spaces of shifts
of a positive definite kernel,” International conference in Approximation
Theory, held 28 Sept - 2 Oct in Dortmund, Germany

Ward gave a one-hour invited talk, “Some remarks on wavelets on the m-
sphere,” given at the International Conference on Wavelet Analysis and Its
Applications, held from 15 - 20 November 1999 at Zhongshan University,
Guangzhou, P. R. China

Ward gave a contributed talk, “Convergent interpolatory processes asso-
ciated with periodic basis functions,” at the symposium “Trends in Ap-
proximation Theory” held from 17 - 20 May 2000 at Vanderbilt University,
Nashville, TN.

Ward gave a contributed talk, “Approximation with interpolatory con-
straints,” at the TENTTH INTERNATIONAL CONFERENCE ON AP-
PROXIMATION THEORY, 26-29 March 2001, University of Missouri at
St. Louis, St. Louis, MO (C. Chui and L. Schumaker, organizers).

Ward gave an invited colloquim on Wednesday, November 13 at the Uni-
versity of Georgia, Athens, GA.

Ward gave an invited twenty-minute talk, “Scattered Data Interpolation
on Spheres: Approximating Rough functions by Smooth Kernels,”at the
Special Session on Sphere Related Approximation and Applications, AMS
Regional Meeting in Chattanooga, TN, October 5-6, 2001.

Activities

Dr. Ward visited Major O'Donnell at Hanscomb AFB on 31 July 1998.
He discussed a number of mathematical problems concerning location of
multiple sources using neural networks and artificial arrays.

Narcowich visited Terry O’Donnell at Hanscom from 17 May to 19 May
1999. The purpose of this visit was to discuss various aspects of detection
of multiple sources via neural beamforming. The details of this visit were
given in a report to Dr. Nachman, written on 24 May.




e Narcowich and Ward, and Robert Schaback, from Goettingen University
in Germany, spent two weeks, 6 August 2000 - 19 August 2000, at the
Mathematische Forschungsinstitut Oberwolfach, under the auspices of the
Volkswagen-Stiftung “Research-in-Pairs” program. Professor Robert Sch-
aback is a leader in the field of radial basis functions.

e Narcowich and Ward, along with H. Mhaskar, were asked by the organiz-
ers of the EILAT98 International Conference mentioned above to write a
survey article to be appear in a book. The survey article that resulted is
listed as [P7).

o Ward attended the CBMS lecture series on wavelets, from 22 - 26 May
at the University of Missouri in St. Louis; David Donoho was principal
speaker.

e Narcowich attended an IMA Workshop on Geometric Design, held from
23 April to 30 April 2001 at the University of Minnesota, and organized
by L. Schumaker.
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